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ABSTRACT

In this project, we built a simulator that models the interactions between robots and an
environment, and between robots and other robots. Every robot has two major
components:  effectors and sensors. Effectors try to make modifications to the
environment, while sensors try to perceive different aspects of the environment. The goal of
this simulator was to simulate robotic interactions in a scalable and accurate fashion.

Our simulator consists of five separate modules: the Environment module, the Robot
Hardware module, the Viewer module, the Control Panel module, and the Messaging
module.  This report covers one specific module, the Environment module. The
Environment module is responsible for modeling the simulated world. It also drives the
simulation. The Environment module manages all the interactions between robots as well as

the interactions between the robots and the simulated world.

KEYWORDS: Cooperative Robotic Simulator, Environment, Distributed Simulations
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Chapter 1 Introduction

1.1  Background

Simulators are useful tools for compressing time, testing without physical repercussions, and
modeling things not yet found in the real world. They are used in a wide range of
applications, anywhere from modeling explosions of atomic bombs, to modeling weather
patterns.

For our simulator, we wanted a system that was scalable and accurate. The primary use of
this system is to test various cooperative robotic programs that could also run on physical
robots. We needed to be able to test scenarios where there are many robots and scenarios
with various environments.

We divided our simulator into five separate modules: the Environment module, the Robot
Hardware module, the Viewer module, the Control Panel module, and the Messaging
module. All of the modules interact through the Environment module. Each module is
designed to be able to run on a separate computer and thus, they all communicate through a
network layer." This enables our simulator system to be distributed across computers, and as

such, harness the power of multiple computers. Figure 1, shows the high-level interaction

! The current implementation of the Communications module does not support separation of the
Communications module from the Environment module.
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between each module.

Robot2

Environment Messaging

Viewerl Q

ViewerN

ControlPanel

Figure 1: Simulator deployment overview.

The Environment module may have an arbitrary number of Robot clients and an arbitrary
number of Viewer modules connected to it. Currently, the number of robots in a scenario is

specified by the Environment model file that is loaded at run time.

1.2 System Design Overview

Each module is responsible for a different part of the overall simulation. Figure 2 shows the

original high-level design of the system.



Robot

Simulator Robot Control

Code

Hardware SimulatorAPI
[

e = Robot Hardware
3D Viewer

Simulator

A

\i
_| | Communications Environment
o Controller Controller
4 \i
A
€C— «
[¢ Stimu h
Environment Environment Simulator
Control Panel i
\i

e i:l Environment
- - >

Environment lg‘ Model
Designer .

" Environment

Building Tool

Figure 2: High level system design. [1]

The Environment module is responsible for conducting the simulation and for simulating
the virtual environment in which the robots will operate. The Robotic Hardware Simulator
is responsible for modeling the hardware that is found on different models of physical
robots, to translate robotic operations into operations that the Environment module
provides, and to break those operations into the time-step size specified by the Environment
module. The Messaging module is a package to allow for simulated communications
between robots. The Viewer module allows us to view the simulation in real time, or to play
back a saved simulation. The Control Panel module allows properties of the simulation to
be set, such as, time-step size, the ports the Environment module will listen on for

connections, and what environment model file to use for the simulation.



Chapter 2 Environment Module

2.1 Environment Overview

The Environment module is the center of the system. It must communicate with all of the
other components. To accomplish this communication we developed various protocols.
These protocols are described in more detail later in the paper. The Environment module
must also orchestrate the entire simulation. I took a time-step based approach to accomplish
this. Each time-step occurs through one iteration of the Environment module’s main loop.

This loop is described in more detail in subsequent sections of this paper.

2.2 Environment States and Main Loop

2.2.1 State Diagram

The Environment may be in one of a set of five states. These states allow the Environment
to determine whether certain variables may be changed and whether or not it can move on

to different stages of the simulation. Figure 3 shows the transitions between states.
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Figure 3: Environment State Diagram

Robots may only connect when the Environment has left the INITIAL state. Parameters,
such as time-step size and port numbers may only be set in the LOADED state. If a viewer
connects and the Environment has passed the SENT_OBJECTS state (is in the
SENT_OBJECTS, or any state after that), the Viewer Objects are sent to the Viewer,
otherwise this is postponed until we are ready to make the transition from the ROBOTS

state to the SENT_OBJECTS state.

2.2.2 Main Loop

The Environment drives the simulation. It does this through iteration of a main loop. This

loop is given in Figure 4.



1 waitForRobots();

2 set State( STATE ROBOTS);

3 sendObj ectsToViewerdients();

4 currentTinme = O;

5 running = true;

6 set State(STATE_RUNNI NG ;

7 while(running) {

8 /1 get the event for this tinestep fromeach Robot
9 /1l ock the robotqueue

10 synchroni zed(robots) {

11 /1 Thi s doubl e-stepped get allows the stuff to travel here
before I block trying to get it.

12 for (int i =0; i < robots.size(); i++) {
13 Envi ronnent Obj ect Robot robot =

(Envi ronnment Cbj ect Robot) robots.get(i);

14 robot . prepGet Event s(current Ti ne) ;

15 }

16 for (int i =0; i < robots.size(); i++) {
17 Envi ronnent Obj ect Robot robot =

(Envi ronnment Cbj ect Robot) robots.get(i);

18 robot . queueEvent s();

19 }

20 }

21 /I process queue fromfront (top).

22 processActi onEvent Queue();

23 /1 send out sensor readings to robots.

24 processSensor Event Queue();

25 /ladd tinmestep to Vi ewer Updates.

26 for (int i =0; i < viewerUpdateQueue.size(); i++) {
27 ((Vi ewer Updat eLocat i on) vi ewer Updat eQueue. get (i )).ti mestep
= currentTi ne;

28 }

29 /1 send out ViewerUpdates to the Viewer

30 sendVi ewer Event s(vi ewer Updat eQueue) ;

31 current Ti ne++;

32 try {

33 Thr ead. sl eep( st eppauseti ne);

34 } catch (InterruptedException e) {}

351

Figure 4: Main simulation loop.

The method “waitForRobots()” simply waits for the expected number of robots to connect
as specified in the Environment model file. After the robots are connected, the state of the
Environment changes to “STATE_ROBOTS”. All the objects in the environment are now
sent to any attached Viewers with the “sendObjectToVRMLClients()” command. The time-
step is initialized to 0, running is set to true, and the state is changed to

“STATE_RUNNING?”, in lines 4-6.



We now enter the main loop. The first step is to ask all the robots for the commands or
requests they wish to perform in the present time-step. The Environment performs this in
two stages. The first stage, “prepGetEvents(currentTime)”, sends the current time-step to
the robot. This prompts the robot to send requests for that time-step to the Environment.
The second stage receives those requests and places them into queues, which are stored
within each EnvironmentObjectRobot. I chose to do this in two steps to help with network
latency, since I make requests to all the robots before blocking waiting to receive the
requests. This gives the requests time to propagate over the network.

After all of the events have been received, the Environment processes all the action events
in line 22. It then goes on to process the sensor events in line 24. After processing all the
events, the Environment must send all the updates to any attached Viewer. It does this in its
call to “sendViewerEvents(viewerUpdateQueue)”. Finally, the time-step is incremented and

the loop begins again.

2.3 Components

2.3.1 System Component Diagram

The Environment can only be used together with the other components. Without the
Robot component, nothing can happen. Generally, you will want to set the parameters of
the Environment through the Control Panel, and view the simulation through the Viewer.

Figure 5 depicts a component diagram of the entire system.
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Figure5: System Component Diagram.

Each component is contained in a package with the names shown above and with the prefix
of “edu.ksu.cis.cooprobot.simulator.”. Since my part of the simulator was to construct the

environment module, I will break this down into its respective modules.

2.3.2 Environment Components

The Environment module has several major components. These components are the
EnvironmentMap component, the CollisionDetection component, the EnvironmentObject
components, the Robot components, and the Sensor components. All these components
work together to produce the simulation of the environment. Figure 6 shows a high-level

component diagram of the environment package.
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Figure 6: Environment Component Diagram.

All of the components within the Environment module interact using references and
method calls. I will explain in more detail, how the major components interact in the

following sections.



2.3.3 EnvironmentMap Component

The EnvironmentMap component contains the representation of the environment as well as
methods to manipulate and query the state of the environment. Figure 7 shows a close up

of the class diagram for the classes related to the EnvironmentMap component.

® EnvironmentMap
o EnvironmentMap() ® EnvironmentObject
@ addStaticObject()
@ addDynamicObject() @ generateVRML()
@ testSpaceConflict() @ getXCoordinate()
@ findProximity() - environmentMap @ getYCoordinate()
@ getCollidedObjects() @ getZCoordinate()
@ getCollidedObject() 1 @ setXCoordinate()
@ getCollidedDistance() @ setYCoordinate()
@ doMove() 0. @ setZCoordinate()
@ getObjectList() - environmentObject @ setXYZCoordinates()
@ setEnvironmentObject() @ calculateMove()
@ getEnvironmentObject(), @ getXYZ()
@ pivot()
@ getDistance()
@ getObjectName()
@ getVRMLObject()
@ printDescription()
@ setEnvironmentMap()
@ getEnvironmentMap()
0..1 | # myShape
@ collisionDetection @ objectGeometry
@ testCollisions() + cbetecter o ObJectGetometry()
0.1 @ testConflict()
&' getVRMLObject()
@ printDescription()

]

[C] CubeGeometry [c] CylinderGeometry

@ CubeGeometry() @ CylinderGeometry()

@ getVRMLODbject() @ getVRMLObject()
@ printDescription()

Figure 7: EnvironmentM ap component classes.

The EnvironmentMap manages all the EnvironmentObjects. Each EnvironmentObject
contains information related to position in three-dimensional space, as well as orientation
and geometry. An EnvironmentObject may have only a single ObjectGeometry associated

with it. The ObjectGeometry class is an abstract class that is currently implemented by two
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classes, CubeGeometry and CylinderGeometry. These classes contain the information
needed to represent their respective geometric properties. Each geometry contains a
method, ‘testConflict’. This method, in the current implementation, refers to a static class,
‘CollisionDetectionNaive’.  CollisionDetectionNaive implements the CollisionDetection
interface shown in the figure above. CollisionDetectionNaive performs simple collision
detection between two geometries that have certain positions and orientations in three-
dimensional space.

EnvironmentMap contains methods that are used by different sensors. In particular, the
“getCollidedObject(s)” methods are used by the sonar and heat sensors in determining their
return values. EnvironmentMap also contains some methods used by the Environment
class. The “addStaticObject()” and ‘“addDynamicObject()” methods are used to add
EnvironmentObjects to the simulation. The “doMove()” method is used by the
Environment class, to move an object within the virtual environment. This move call obeys
collision rules, and specifies how far the robot wishes to move. This means that the robot
may not move as far as it tried, and it is possible that it may not move at all.

The EnvironmentObject class contains methods that act on any EnvironmentObject,
whether they are robots or otherwise. It contains methods for setting and getting positional
information as well as for current rotation (“pivot()”) about the y-axis (the y-axis being
perpendicular to the ground).

If you wish to expand the set of geometries that an EvironmentObject may have, you must
perform several steps. First you must create a new class that extends ObjectGeometry, you
should include in your new class fields that allow you to describe this new shape. Second,
you need to add your new shape into the collision detection code. Currently, this resides in

CollisionDetectionNaive. Third, you need to add appropriate an Viewer object for your new
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geometry (for example ViewerCylinder). Last, you must update the EnvironmentFileLoader

to recognize the new geometry and be able to initialize the dimensions of the new geometry.

2.3.4 Robot and Sensor Components

The representation for robots in the environment is an extension of the EnvironmentObject
class. A robot may have a number of sensors and effectors, these sensor and effectors may
be located on the robot in different places. The information for sensors are stored along

with each robot. A class diagram for the sensor and robot structure is shown in Figure 8.

@ EnvironmentObject
@ calculateMove()
@ generateVRML() & RobotSensor
@ getDistance()
@ getObjectName() 0.: RobotSensor()
@ getVRMLODbject() @ EnvironmentObjectRobot &' generateSensorResponse
@ getXCoordinate() @ getld()
@ getXYZ() @ getSensor() @ getOwner()
@ getYCoordinate() [<}————————| & printDescription() - owner @ getType()
@ getZCoordinate() @ queueEvents() @ getRot()
@ pivot() @ prepGetEvents() 0.1 @ setRot()
@ printDescription() @ sendSensorResponse() @ getx(
@ setXCoordinate() @ setX()
@ setXYZCoordinates() @ getY()
@ setYCoordinate() @ setY()
@ setZCoordinate() @ getZ()
@ setEnvironmentMap() @ setZ()
@ getEnvironmentMap() @ getShape()
@ setShape()
@ printDescription()
@ getAbsoluteXYZ()
l
@ RobotSensorScent @ RobotSensorHeat
[C] RobotSensorBump @ RobotSensorSonar
& RobotSensorBump() gc :::::;Zgi?:;::gponse_ o RobotSensorHeat() & testObject: EnvironmentObje)
@ generateSensorResponse @ generateSensorResponse| & RobotSensorSonar()
@ generateSensorResponse()
@ setSonarRadius()
@ setSonarRange()

Figure 8: Rabot and robot sensor class diagram

Each sensor has some common information such as position and rotation relative to the
robot. This information is stored in the RobotSensor class. Each one of the subclasses of
RobotSensor (for example, RobotSensorBump) extends RobotSensor to specialize it for the
particular sensor function it is supposed to perform. RobotSensor is an abstract class, with

one method left incomplete: ‘generateSensorResponse()’. 'This method is called by the
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Environment whenever the robot requests a response from this particular sensor. The
Environment, therefore, does not need to know the details of how each sensor operates.
The Environment just issues the same command (“generateSensorResponse()”) for every
sensor, which returns a RobotSensorResponse object. This RobotSensorResponse is simply
passed on to the robot that made the request, with no further processing by the

Environment. In fact, RobotSensorResponse is a class within the robot package.

2.4 Currently Implemented Effectors and Sensors

I have currently implemented three sensors and three effectors. I will outline how each one

of these sensor and effectors operate.

2.4.1 Effectors

A robot may send action events to the environment every time-step. These actions are
preformed on the virtual environment. When the actions are preformed on the virtual
environment, the state of the virtual environment is changed (S$,2S,). The currently
implemented commands are move, turn, and tag.

The move command attempts to move the object within the virtual environment. The move
command has one parameter, which is the distance to move. Since each object has an
orientation (rotation about the y-axis), the move is performed in the direction of the
orientation. There are two outcomes of the move operation. If the object is placed at the
coordinates determined by the distance and orientation and there is no collision, then the
move is allowed and the virtual environment changes from state S, to S,. If the move is not
allowed, then a smaller move is tried until either the move can be made or no move is

possible. If no move is possible, the environment’s state remains the same.
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The turn command changes the object’s orientation within the virtual environment. It also
has one parameter, which is the amount to turn in radians. Currently turns are always
allowed and no checking is done in the virtual environment for collisions caused by simply
turning.

The tag command currently ‘tags’ objects in a specified radius from the centroid of the robot
object. It tags the object by setting the object’s heat component to 0. The tag command has

no limitations and nothing is checked in the virtual environment.

2.4.2 Sensors

A sensor is basically an instrument that gives a robot information about the current state of
the virtual environment. A robot may request sensor responses each time-step. The sensors
that I have currently implemented are bump sensor, sonar, and heat.

The bump sensor is used to detect whether or not one object is against another object. The
bump sensor is currently stuck to the front of the robot. It is important to note here that,
on the actual Scout robot, there are several bump sensors located around the robot. The
response that my bump sensor sends back to the robot is merely a true if the sensor is
activated, otherwise it sends back false.

The sonar sensor is a bit more sophisticated than the bump sensor. It allows a robot to
determine in what direction and how far away an object is. A robot may have several sonar
sensors which are oriented in different directions and are located in different positions on
the robot. When a request for a sonar sensor is made, the distance to the nearest object in
the direction that the sonar is facing is sent back to the robot. Each sonar has a maximum
range, thus, if nothing is found within that maximum range, then the maximum value is sent

back to the robot.
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The heat sensor is non-directional. It senses the presence of heat within a certain radius.
Heat comes from objects in the robot’s surrounding and is additive. This means that if there
are more than one object in the range of the heat sensor, their values will be added. The
heat also decays with distance from the source. Therefore, the farther away a robot is from a

heat source, the lower the value sent back to the robot.

2.4.3 Integrating New Sensors

In order to integrate new sensors into the Environment, you must create a new class which
represents your new sensor and which extends the RobotSensor class. The main part to fill
in in your new sensor class, is the generateSensorResponse method. This method is declared
abstract in the RobotSensor class and therefore must be defined in your new subclass. This
method is called whenever a robot requests sensor state information for your new sensor.
This method has as a input parameter, a reference to the current EnvironmentMap
component. This allows you to call methods in EnvironmentMap to obtain information
about the current state of the virtual world. After you have implemented your new sensor
class, you must add the appropriate code into the EnvironmentFileLoader within the
‘setupSensors()” method to be able to instantiate the new sensor class. Of course, you must
also alter your robot to be able to handle the new sensor. For more information on the

robot’s side of sensors, please refer to Venkata Prashant Rapaka’s 2004 Masters’ Report.

2.5 Environment Protocols and Interfaces

The Environment module must communicate with the Robot Hardware Simulator(s), the
Viewer(s), Control Panel(s), and the Messaging module. Each point of communication

involves a protocol or interface. The protocol definition allows the Environment to
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communicate with these modules efficiently and effectively. All of the protocols have been

implemented by making use of Java socket connections.

2.5.1 Robot Hardware Simulator and Environment Protocol

This protocol enables the Robotic Hardware Simulator module to send commands to be
performed on the virtual environment provided by the Environment module. The protocol
also enables the Robotic Hardware Simulator to receive simulated sensor readings from the

virtual environment. In Figure 9, a typical run of the protocol is depicted.

Environment Robotl
T
|
|
|
|
I
I
|
|
1 Connect
K
|
L MyName (String)
i Time-Step size (Long)
|
]
|
|
|
|
|
I
i
: Timestep (Long)
A

N
~
~

This section repeats for
the life of the simulation.

~

RobotRequest-1

RobotRequest-2

RobotRequest-N (last message flag set)

Message-1 (if messaging is enabled)

RobotSensorResponse-1

RobotSensorResponse-2

D e ]

-,

-

RobotSensorResponse-N (last message flag set).

’
B e e Bt S N

-

NN N N NN L]

Figure 9: The Robot/Environment Protocol.

The protocol is initiated by a Robot connecting to a pre-specified port to the Environment.
Once a connection is established, the Robot informs the Environment of its name (this
name must be unique). After receiving the name, the Environment informs the Robot of

the time-step size. This ends the initial phase of the protocol.

~16 -



In the second phase, the Environment sends the current time-step to the Robot as a Long
object. The robot then sends a series of commands to the Environment. These commands
may consist of actions or requests. An action may be to move forward one centimeter, while
a request may be a request for the current status of the robot’s bump sensor. The list of
commands ends with the last message flag being set. Figure 10 shows the RobotRequest

class.

[ RobotRequest

iF ACTIONEVENT: int
i SENSOREVENT: int
iF DISCONNECT: int
iF NOPEVENT: int

i COMMEVENT: int

i MOVE: int

3 TURNRIGHT: int

i TURNLEFT: int

¥ 1aG: int

i SENDMESSAGE: int
iF BUMPER: int

iF SONAR: int

i HEAT: int

o type: int

@ sensorid: int

o messageAction: int

@ messageAmount: double
2 |astMessage: boolean
@ message: Message

a RobotRequest(in type: int, in action: int): void

a RobotRequest(in type: int, in action: int, in messageAmount: double, in lastMessage: boolean): voi
& RobotRequest(in type: int, in id: int, in action: int, in messageAmount: double, in lastMessage: boo
& RobotRequest(in type: int, in action: int, in message: Message): void

@ isLastMessage(): boolean

Figure 10: RobotRequest class.

A RobotRequest currently may have four types: ACTIONEVENT, SENSOREVENT,
NOPEVENT, or COMMEVENT. These types are defined as static final integers. Each

message also has a specific messageAction: MOVE, TURNRIGHT, TURNLEFT, and TAG
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for the ACTIONEVENT type; BUMPER, SONAR, and HEAT for the SENSOREVENT
type; and SENDMESSAGE for the COMMEVENT type. The sensorid field is currently
only used if the type is set to SENSOREVENT. The messageAmount field is currently only
used when the type is set to ACTIONEVENT. The message field is only used when the
type is set to COMMEVENT.

After receiving the RobotRequests, the Environment processes the actions and requests and
then sends back a series of responses, again being terminated by the last message flag being
set. If robot communications is enabled, any messages for the robot are sent before any
RobotSensorResponses are sent. The second phase is repeated for the life of the simulation.

Figure 11 shows the RobotSensorResponse class.

[ RobotSensorResponse

% ksonar: int

W kBumper: int

F kDisconnect: int

3 kHeat: int

F kscent: int

2 mReponseType: int
@ activated: boolean
@ proximity: double

@ disconnect: boolean

Figure 11: RobotSensor Response class.

The RobotSensorResponse may be used for different types of sensors, mResponseType is
set to the corresponding sensor type which generated the response (kSonar, kBumper,
kHeat, or kScent). The activated field is used for boolean valued sensors, such as the bump

sensor, and proximity is used for real valued sensor readings, such as sonar.
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2.5.2 Viewer and Environment Protocol

This protocol allows viewers to connect to the Environment module, allowing them to
observe the simulation. The protocol is simple and consists of two phases as shown in

Figure 12.

Environment Viewer

Connect

ViewerObject-1

ViewerObject-2

ViewerObject-3

ViewerObject-4

ViewerObject-N (last message flag set)

T
|
|
K
i
|
|
|
|
|
|
!
|
|
|
I
|
|
T
|
|
I
|
i
: ViewerUpdate-1

A4
-

This section repeats for
the life of the simulation.

ViewerUpdate-2

ViewerUpdate-3

TTETTTTA

. ViewerUpdate-N

NN N N N N N N N

|
|
I
|
|
L
|
|
~1
|
|
|
|
|
|
|

Figure 12: Viewer/Environment Protocol.

The initial phase involves the Viewer establishing a connection with the Environment on a
pre-determined port. Once the connection is established (and after all the robots are
connected), the Environment sends all the objects for display to the Viewer. If a Viewer
connects after the simulation is started, it simply moves through both phases of the protocol
right away. If it connects before all the robots are connected, then the first phase is delayed
until all the robots have connected. The objects sent to the Viewer include specifications on

shape, size, position, and color and are shown in more detail in Figure 13.
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() ViewerObject

name: String
xpos: double
ypos: double
zpos: double
rotation: double
color[0..*]: float
ir: float

heat: double

@ type: int

¥ CYLINDER: int
¥ Box: int

¥ SPHERE: int

2 lastObject: boolear]

o 0 0 9 0 O O 0O

o ViewerSphere [ ViewerCylinder ® viewerBox

2 radius: double 2 height: double @ length: double
@ radius: double & width: double
2 height: double

a ViewerSphere()

o ViewerCylinder()

& ViewerBox()

Figure 13: Viewer Object classdiagram.

The name field of the ViewerObject is a unique identifier, which allows the Environment to
specify updates to that ViewerObject by using its name. The xpos, ypos, and zpos, are the
current coordinates of the object in three-dimensional space, with respect to the centroid of
the object. The color field specifies the color of the object in an array of three floats. The ir
and heat fields indicate the infrared reflectance and infrared output respectively. Finally the
type field is set to one of the final static integers: CYLINDER, BOX, or SPHERE. Each of
the subclasses adds information about their respective geometries. All the units of these
measurements depend on what units the Environment Model File and the Robot module

have agreed on.
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Once all the objects are sent, the protocol enters the second phase. In the second phase, any
positional updates that happen during a time-step are sent to the Viewer. This allows the
viewer to display the object at its new coordinates. This information may also be stored for

future playback. Figure 14 shows the ViewerUpdatelLocation class.

(C] ViewerUpdateLocation

@ objectName: String
2 x: double

2 y: double

@ z:double

@ orientation: double
o

timestep: long

@ ViewerUpdateLocation(in objectName: String, in x: double, in y: double, in z:

Figure 14: Viewer Updatel ocation class.

The “objectName” field is used by the Viewer to determine which object has moved. The
“timestep” field is used for playback in order to determine which events happened together.
The x, vy, and z fields give the new position in three dimensional space, while the orientation
tield gives the new rotation about the y-axis. These use the same units as the ViewerObject

class.

2.5.3 Control Panel and Environment Protocol

The Control Panel now communicates with the Environment through socket connections.

The protocol is a simple request/response protocol as shown in Figure 15.
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Environment ControlPanel

] 0

: Connect :

[ i

| |

| |

_-A I

o Request :
: K R ! This section repeats for the

I | esponse 1 | life of the connection.

I [ >t

e | |

~d I

Figure 15: Control Panel/Environment Protocol.

This allows the Control Panel to run on a machine other than what the Environment
module is running on. For more information about the Control Panel/Environment

protocol, please refer to Aaron Chavez’s 2004 Honors Report.

2.5.4 Environment Model File Format

The environment model file contains all the information required to represent an
environment. In the present implementation, it also contains definitions of the robots that
will be in the environment. The Document Type Definition (DTD) may be found in
Esteban Guillen’s 2004 MSE Report.

The Environment Builder tool generates an XML file to the DTD specification, which then
can be loaded by the simulator. The simulator uses the EnvironmentFileLoader class to

parse this XML file.
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Chapter 3 Conclusions

This simulator will be a very useful tool. It will allow multi-agent systems (MAS) to be
tested, easily, and without the consequences of testing in the physical world. It may also be
used for any testing that one may need to do for any performance comparisons of different
robot control code.

Our simulator system is made up of several distributable components, one of which is the
Environment module. The Environment module plays a key role in the overall simulator
system. It is responsible for coordinating and directing the simulation as well as modeling
the real world environment. Within the Environment module are several other modules.

These modules help the Environment to model the world and orchestrate the simulation.
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Chapter 4 Future Work

Several improvements would make this simulator more useful and efficient. I will try to
outline these improvements in detail that would be sufficient for anyone to begin work on
them. I have divided the improvements into five separate categories: network

improvements, map extensions, collision detection, further abstraction, and use of reflection.

4.1 Network Improvements

This simulator is a distributed system. As such, its modules must communicate with each
other. This communication is done by sending messages via a network. In this section, I
will outline a method of improving this communication and thus adding a speed boost to the
simulator.

As noted above, every time-step the Environment module requests events from the robots
and blocks waiting for those events. I will propose here a method of pre-fetching those
events in some circumstances.

Many of the time-steps a robot does not make a sensor request. This means that the robot is
not waiting for any message from the Environment. Thus, the Environment may make
several requests for events from the robot before processing previous events. This could be
done in a separate thread so that event pre-fetching happens in the background. Most of the
time spent in event fetching is waiting for the network, not the CPU. So, I believe that this
would save much of the time that is spent waiting for messages to travel over the network.

Figure 16 shows an example protocol implementing this idea.
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Figure 16: Example of a protocol to improve network latency.

Another idea is to parallelize RobotSensorResponse messages. This, also, could help speed
up the Environment module. This could be done by making each
EnvironmentObjectRobot a separate Thread. These threads could do the work of sending
out the responses.

If many viewers are attached to the Environment, the Environment may be slowed down by
sending out so many updates. This could be prevented by setting up a proxy Viewer update
module. The Environment would then send any updates to the proxy, who would then be

responsible for sending those updates to any Viewer clients.
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4.2 EnvironmentMap Extensions and Collision Detection

As detailed previously, the EnvironmentMap component is responsible for keeping track of
objects in the environment and for allowing operations on those objects (such as move).
Possible future work on this component could include creating domain specific
EnvironmentMap components that could be swapped at runtime. The domain specific
EnvironmentMap component could potentially be much faster, as it could make domain
specific assumptions concerning the Environment.

I will detail one possible extension here. Take, for instance, a grid world. In a grid world,
things such as collision detection can be greatly simplified. My idea is to have a grid that can
have its granularity set at runtime. The finer grain, the more memory required for the grid,
the courser grained, the less accurate. A simulation could be run in a course-grained mode
for speed and to observe general characteristics. Fach grid would represent some fixed
amount of the environment. If we are dealing with an infinite environment, we could also
include grids that would represent all points outside our current grid. An object would, at
every point of time, be located in one or more grids. If an object wished to move, the grids
into which it wished to move would be checked for objects already occupying them. If
nothing occupied them, the move would be allowed. If any of the grids were occupied then
you could either employ traditional collision detection between the object that wished to
move and the objects within the grids, or you could assume that they would collide and
disallow the move.

Another method to improve the collision detection could be to use Java3D’s built in
collision detection mechanism. This mechanism currently implements collision detection for

a variety of geometries. It is native code, so it is possibly faster. Also, it may utilize the
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graphics processing unit (GPU) of the computer’s video card, further offloading
computation from the computer running the Environment.

Further work on the EnvironmentMap component could be implementation of more
geometries, as well as support for objects that are made up of composed geometries.

Support for more physics may also be desired in some simulated domains.

4.3 Further Abstraction and Use of Reflection

There is one component that could be abstracted further, the effectors. Currently all of the
effectors are implemented in the Environment class. These should be moved out to a
structure similar to the sensors.

Reflection could be used for loading the sensors, effectors, and maps. This would allow

extensions (a.k.a. pluggable components) without the need to modify the original code.
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APPENDIX A: Running the Environment.

The Environment module may be run by placing all of the simulator packages in your
classpath and executing the Environment class. The Environment class takes one argument,
which is the environment file to load for the current simulation. After that, additional
parameters may be set by using the ControlPanel. By default, the Environment will listen on
port 3000 for viewers, port 8000 for robots, and port 9000 for control panels. Once the

Environment is successfully started, you should see output similar to that given in Figure 17.

C:\eclipse\workspace\RoboSim\bin>java -classpath .
edu.ksu.cis.cooprobot.simulator .environment.Environment ..\TestLoadFiles\
environment\proto-one-robot.xml

0(0 seconds) - Starting Control Panel Server...
Sensor Amount - 3

Sensor Type - bump

Adding Sensor -

ID-0

Type-0

Shape:

Type-3

Sensor Type - heat

Sensor Type - sonar

0(0 seconds) - Environment changed state: 0 --> 1
0(0 seconds) - Starting Robot Server...

0(0 seconds) - Starting VRML Server...

Figure 17: Running the Environment.

After the Environment is started, the robots, viewers, and any control panels may be started.
The Environment output will indicate whenever a viewer or robot has successfully
connected. As soon as all the expected robots have connected, the Environment begins the

simulation.
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